Llama 3.1 и Mistral Large 2

В прошлом месяце вышли две интересных модели - Llama 3.1, улучшенная версия Llama 3, и Mistral Large 2.

Самое заметное отличие Llama 3.1 от предыдущих моделей - у нее есть версия 405B- 405 миллиардов обучаемых параметров. Это самая большая открытая языковая модель, и опубликованные метрики показывают ее производительность на уровне GPT-4. Тесты проводились как на общих бенчмарках, например MMLU, так и специализированных - на код и математику.

Для меня особенно интересными показались улучшенные мультиязычные возможности этой модели, так как я давно экспериментирую с обучением LLM на мультиязычных данных, моя последняя модель ruslandev/llama-3-8b-gpt-4o-ru1.0 превзошла GPT-3.5 на русскоязычной версии бенчмарка MT-Bench.

Llama 3.1 поддерживает семь языков, кроме английского - французский, немецкий, хинди, итальянский, португальский, испанский и тайский. Русского в списке нет, как легко заметить, но это не значит, что в корпусе базовой модели нет примеров на русском. Есть, и предостаточно, это становится очевидно при файнтюнинге. У меня есть мой собственный датасет для файнтюнинга ruslandev/tagengo-rus-gpt-4o, который я сгенерировал из преимущественно русскоязычных промптов датасета Tagengo с помощью GPT-4o.

Теперь о минусах модели Llama 3.1 - файнтюнинг 405B версии обойдется дорого, так как даже при сжатии в 4bit необходимо выделить около 200 ГБ VRAM для такой задачи. Поэтому я файнтюнил версию 8b на вышеупомянутом датасете, арендуя две видеокарты A100 на облачном сервисе immers.cloud. Но я не заметил особого превосходства версии 3.1 над третьей версией. Даже наоборот, я столкнулся с несколькими проблемами - например, 3.1 после файнтюнинга на моем датасете показала тенденцию прерывать генерацию, не завершив ответ - до причины я так и не докопался, но у Llama 3 такой проблемы не было.

Кстати, если вам тоже кажется неподъемной версия 405B для запуска на своем железе, стоит обратить внимание на модель Mistral Large 2, которая вышла почти одновременно с Llama 3.1. У этой модели 123 миллиарда параметров - в три с лишним раза меньше, чем у Llama 3.1 405B. Но вот интересные результаты бенчмарков, по которым можно сравнить эти две модели.

Мистраль побеждает ламу на MT-Bench:

Llama 3.1 и Mistral Large 2

А также на задачах по генерации кода и математике:

Llama 3.1 и Mistral Large 2
Llama 3.1 и Mistral Large 2

При этом очевидно, что инференс Mistral Large 2 обходится дешевле.

Я еще не пробовал файнтюнинг Mistral - у Llama, на мой взгляд, больше инструментов для этого, включая официальные скрипты llama-recipes, которые поддерживают FSDP - Fully-Sharded Data Parallel, эффективный способ распределенного файнтюнинга, когда на нескольких видеокартах параллелятся не только данные (в отличие от DDP - Distributed Data Parallel), но и параметры и градиенты модели.

Так что по крайней мере 8B версия llama 3 и 3.1 остается отличным материалом для ИИ разработки, при ее легковесности и высокой производительности.

Подписывайтесь на мог тг канал, там все про нейросети!

11
1 комментарий

прерывать генерацию, не завершив ответОбычно подобное случалось когда юзаешь не самую ластовую llama.cpp

если вам тоже кажется неподъемной версия 405B для запуска на своем железе, стоит обратить внимание на модель Mistral Large 2Вот тут смешно конечно, что то титан неподъемный, что это.
Тут мне кажется для домашних энтузиастов сугубо только л3.1 на 8б и мистрал немо на 12б

За файнтюнинг под русский респект

1
Ответить