Шейдеры. Что и как
Расскажу, как в общем случае они работают, что умеют и как их используют
Сразу оговорюсь, что материал рассчитан на тех, кто никогда не работал с шейдерами или вообще не знаком с разработкой игр, то есть это в некотором смысле научпоп.
Слово «шейдер» в контексте разработки игр очень популярно, слышать его могли и те, кто игры не делает. Само слово изначально появилось от англ. shading (затенение) — первые шейдеры использовались, чтобы передавать глубину с помощью работы со светом, блеском, тенями и прочим. Со временем шейдеры стали использоваться для совершенно разного вида постобработки и вообще отрисовки примерно всего.
Говоря общими словами, шейдер — это просто программа для графической карты. То есть то, что пишется школьниками на паскале (хипстерами на пайтоне) — это программы для вашего центрального процессора (CPU), а шейдеры — для графического (GPU). Особенность же этих программ выходит из особенностей GPU — они работают параллельно на сотнях маленьких ядех вместо нескольких больших, преимущественно осуществляя математические операции.
Теперь разберемся, как это все работает.
В общем случае цель шейдера — отрисовать некоторый объект. Поэтому возьмем куб, распишем процесс его отрисовки и посмотрим, где используются шейдеры и зачем. Сначала опишем сам куб. Для графической карты это 8 точек, между некоторыми из которых есть плоскость. Каждая из точек описывается тремя числами (правильно сказать, что это вершины). Помимо этого у кубика есть цвет и положение внутри мира.
Процесс отрисовки
Процесс отрисовки, если его достаточно упростить (что я и сделаю в рамках этой статьи), можно поделить на несколько шагов:
1. Получение входных данных из памяти.
2. Выполнение шейдера вершин.
3. Растеризация.
4. Выполнение шейдера пикселей (фрагментов).
5. Проведение тестов «глубины».
6. Отрисовка на текстуру для экрана.
В первом шаге видеокарта каким-то образом получает данные (вершины, плоскости, текстуры) в свою видеопамять, для нас это сейчас не так важно. Далее происходит конвертация координат относительно объекта в координаты на экране относительно камеры. После происходит растеризация — высчитывается, в каких пикселях уже на экране находится объект. Такие пиксели называют фрагментами. Отличие от пикселей заключается в том, что фрагмент помимо информации о пикселе, содержит еще и некоторую побочную информацию, полученную после растеризации. Для упрощения будем считать, что это все просто пиксели на экране. Далее для каждого пикселя выполняется шейдер фрагмента. А затем проверяется, что расстояние от камеры до фрагмента соответствует высчитанному заранее в нужном направлении в буфере глубины. Проще говоря, проверяется, нет ли перед объектом чего-либо еще, и нужно ли его отрисовывать на итоговое изображение.
Как видите, в процессе отрисовки можно заметить два вида шейдера. На самом деле, сейчас есть чуть больше видов, но они не столь важны для разбора, так как имеют более специфичный характер использования, а мы рассказываем на пальцах. Но вот те два, что нас волнуют:
1. Шейдер вершин.
2. Шейдер фрагментов.
Шейдер вершин
Как сказано было ранее, этот шейдер (или группа шейдеров по очереди) занимается переводом координат относительно объекта, в координаты на текстуре.
На картинке начало координат немного не соответствует реальным, что все так же не влияет на понимание процесса :)
Пройдемся по состояниям. В первом у нас, очевидно, входные координаты без излишков. На втором они были перенесены в координаты относительно начала «мира». Потом они переносятся в координаты относительно точки смотрящего (видно на второй картинке), но заметно, что картинка плоская. Их проекция происходит далее и мы получаем наши итоговые координаты. Все эти операции производятся шейдером. Помимо прочего, он позволяет не только отобразить реальные координаты, но и модифицировать их так, чтобы исказить объект для эффекта. Например, я недавно писал шейдер, который переворачивал спрайт, чтобы отрисовать его тень:
Из занимательного — итоговые вершины располагаются на так называемой плоскости Clip Space и находятся в диапазоне от -1.0 до 1.0. Именно с такими координатами потом и работает видеокарта.
Шейдер фрагментов
После преобразований вершин и растеризации нужно высчитать цвет каждого фрагмента (помним, что для упрощения это пиксели). Для примера возьмём наш куб: мы помним, что он залит одним цветом. Просто сделаем так, чтобы цвет каждого фрагмента стал цвета куба и все:
Выглядит немного странно, да? Проблема в том, что мы не видим ни теней, ни текстур. Будь на кубе какая-либо текстура, мы бы заметили переход между гранями. Вот возьмем текстуру:
Теперь достаточно в каждом пикселе просто брать цвет из текстуры. Но чтобы это сделать, нужно добавить для каждой точки куба еще информацию: UV канал. Это координат вида (u, v). Отсюда и название, так как x и y были заняты. Она присваивается вершине объекта и обозначает точку на текстуре, которая ей соответствует. Чтобы было понятнее, если мы хотим на каждую грань куба нарисовать знаком��е нам лицо, то UV координаты для каждой грани будут выглядеть предельно просто:
Модифицировать их никак не надо. Более того, считать координаты для каждой точки — тоже не нужно. Этим занимается GPU, самостоятельно интерполируя точки из вершин. Тогда достаточно просто сказать для каждой точки что-то вроде
Это очень условный пример, но примерно так в простейшем случае оно и работает:
Помимо натягивания текстур в пиксельном шейдере можно, например, получить информацию об освещенности и добавить к цвету черного пропорционально затемнению в этой точке, тогда объект будет менее плоским. Это, конечно, если просчет освещенности где-то написан, потому что сама по себе видеокарта о понятиях освещения и теней мало чего знает. Вообще делать с цветами можно что угодно, например подменять их в зависимости от игрока:
Помимо UV канала в шейдер в зависимости от его вида приходят разные данные. Они зависят от игрового движка и графической библиотеки. Обычно туда входят данные о местоположении точки, нормаль (вектор исходящий от поверхности в точке), UV канал. Но также шейдер вершин может передавать данные в пиксельный шейдер. Если это координата, то она будет проинтеполирована на основе положения фрагмента относительно вершин, между которыми он находится, как, например, UV данные.
В общем-то, на этом все :)