Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Я, как и многие мои читатели, очень люблю игры. Уже довольно обширное число моих статей было посвящено ремонту и моддингу самых разных игровых консолей — как китайских «нонеймов», так и брендовых PSP и PS Vita! Однако, меня тянет к железу не только желание отремонтировать и поставить в строй «устаревшие» девайсы, но и мания делать и созидать что-то своё! А ещё я очень люблю программировать игры и графику сам. Недавно я загорелся идеей разработать с нуля свой портативный «тетрис»: от схемы и разводки платы, до написания прошивки и игр под нее. Что получается, когда программист, который поставил электронику практически во главе своей жизни, пытается сделать свое устройство? Читайте в статье!

❯ Как я к этому вообще пришел?

Проекты разработки самодельных игровых приставок стали очень популярны к нашему времени. Если раньше embedded-разработка была достаточно дорогой и доступной лишь для избранных, то сейчас на рынке можно найти все что хочешь — и мощные микроконтроллеры с кучей периферии за 300 рублей, и готовые дисплейные модули по 250 рублей, и макетные платы с удобными dupont коннекторами за весьма скромные деньги.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Собрать свой гаджет в пределах одной-двух тысяч рублей стало вполне реальным. Люди собирают себе самые разные устройства, а игровые приставки — одна из самых популярных тем. Однако, для многих людей, которые только начинают знакомится с миром embedded-электроники, собрать консоль в своем корпусе с Raspberry Pi на борту и RetroPie в качестве оболочки — за счастье.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Однако есть определенная категория электронщиков, к которой отношусь и я — нам нужно делать всё с нуля! Свои проекты я стараюсь реализовывать на самопальных фреймворках/движках, точно также я мыслю и в подходе электроники — ну не могу я использовать чужие решения и стараюсь разобраться в вопросе сам. За моей спиной есть весьма интересные демки. Например, это моя игрушка с незамысловатым названием «ралли-кубок ТАЗов», которую я написал за неделю с нуля (рендерер, звук, ввод, редактор уровней — все свое) в 2022 году:

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Вот так, с любовью программировать игры, я и пришел к мысли сделать свою консоль, так как вижу её именно я. Только без чужих библиотек и наработок, но не прям уж bare metal. Сел я и начал думать, на чём же мы будем строить наш игровой девайс!

❯ Из чего будем делать?

Как я уже говорил выше, в наше время выбор железа для создания своих девайсов большой — тут и мощные микроконтроллеры/одноплатники, по производительности сравнимые с телефонами 2005-2006 годов, и различная периферия — аж глаза разбегаются. Однако проектировать будущую консоль нужно исходя из некоторых требований.Характеристики моего девайса следующие:

  • Процессор: двухядерный ARM микроконтроллер RP2040 на частоте 133мгц, построенный на архитектуре Cortex-M3. Сам процессор распаян на плате Raspberry Pi Pico.
  • ОЗУ: 260 килобайт SRAM, встроена в процессор. Немного, но если грамотно распоряжаться ресурсами — то хватит.
  • ПЗУ: 2Мб SPI Flash-памяти, также распаяны на плате.
  • Дисплей: 1.8" TFT-матрица с разрешением 128x160. Выбор разрешения обусловлен производительностью будущей консоли — процессор банально не сможет заполнять матрицу с относительно высоким разрешением.
  • Ввод: 6 кнопок, 4 из которых — направление, 2 — действий. В будущем могут добавиться еще несколько.
  • Звук: динамик. Пока не знаю, с чего рулить будем — возможно, возьмем «железный» ШИМ-контроллер процессора, а возможно прикрутим внешний ЦАП с i2s.
  • Питание: 3.7в аккумулятор BL-4C. Да, да, тот самый с Nokia и современных кнопочников! Аккумулятора, емкостью в 800мАч должно хватать хотя-бы на 4-5 часов игры. При этом зарядка АКБ обеспечивается модулем TP4056.

Весьма неплохо для самоделки, согласны? Как я уже говорил раннее, эти характеристики примерно соответствуют мобильным телефонам 2004-2006 годов — Nokia 6600, Sony Ericsson K510i, Samsung D800. Отличие лишь в ОЗУ (в телефонах её 2-4 мегабайта) и периферийных модулях типа контроллера дисплея.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Важную пометку нужно сделать касательно дисплеев: эти 1.8" матрицы бывают приходят с «синевой» — это не железная проблема и не совсем брак. Сам контроллер в дисплея в них сильно греется (хотя токоограничивающий резистор стоит) и негативно влияет на клей, из-за чего матрицы отклеивается от подсветки и слои поляризации начинают «синить» картинку. Лечится проклееванием подложки матрицы суперклеем.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

RPi Pico я решил выбрать, поскольку информации про них достаточно мало, характеристики хорошие и пока что никто особо ничего на них не делал, тем более в рунете. А ещё у них очень удобное и простое SDK, практически bare-metal. ESP32, например, работает на FreeRTOS и имеет кучу библиотек, здесь же API простое и понятное.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Закупаем все необходимое и начинаем творить!

❯ Графика

В первую очередь нам нужно подключить дисплей и что-нибудь на него вывести. Заодно и SPI погоняем на незнакомом чипсете, благо работа с ним очень простая — задаем конфигурацию пинам (gpio_set_function), настраиваем SPI-контроллер и можно посылать данные.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

SPI у RP2040 работает на частоте вплоть до ~60мгц — это достойная скорость передачи, в том числе и для быстрого вывода графики. На самом деле, SPI даже предпочтительнее чем параллельный 8080-интерфейс для использования в микроконтроллерах: дело не только в количестве занимаемых пинов, но и в возможности использования DMA!

В подобных проектах всегда нужно делать так, чтобы дисплей можно было при необходимости поменять, а желательно вообще научить работать его с несколькими контроллерами: разные дисплеи одной диагонали могут использовать разные контроллеры. В моём случае, это ST7735. Для разрешений 240x320 используются ILI9325, ILI9341, ST7789. Команды инициализации дисплея честно позаимствованы, но именно в этом нет ничего зазорного — сама система команд относительно стандартизирована, отличается лишь первичная настройка питания, гамма-коррекции и т. д — часто init sequence вставляет сам производитель в даташит.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

После инициализации дисплея пробуем что-нибудь вывести. Да, все работает без проблем. Пару важных нюансов: ST7735 требует посаженный на землю CS, в воздухе его оставлять нельзя, как некоторые ILI (вы ведь навряд ли будете вешать несколько устройств на одну шину с дисплеем, когда есть вторая?) и логическое состояние 1 на пине RESET (в воздухе и «на земле» он будет висеть в постоянном ресете).

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Для полустатичной графики, можно обойтись лишь командами дисплея — например, тут есть удобные функции для заливки прямоугольников (setArea и пишем цвет без остановки) или скроллинга. Сделано это для более слабых микроконтроллеров. Нам они не подойдут — выделяем память под фреймбуфер/бэкбуфер и настраиваем канал DMA для разгрузки процессора в процессе передачи данных:

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Саму картинку подготавливает процессор: именно он рисует картинки и он же делает их прозрачными. На него ложится основная работа, однако мы можем ему помочь разгрузиться, если отдадим передачу уже подготовленного кадра на дисплей на DMA (Direct Memory Access) — устройство в микроконтроллере, которое позволяет процессору настроить параметры передачи данных, а DMA их будет сам копировать из памяти или в память. Таким образом, можно реализовать асинхронное копирование нескольких блоков ОЗУ, или, как в моем случае — передачу буфера кадра на дисплей, пока процессор готовит следующий. Чем больше разрешение — тем больше эффекта от DMA!

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Кроме того, важно выбрать формат цвета для нашего дисплея: я выбрал 2-х байтный RGB565 (5 бит красный, 6 бит зеленый, 5 бит синий). Это экономичный формат который выглядит красивее палитровой графики и кушает не так уж и много драгоценной памяти. Кроме того, на данный момент мы умеем отрисовывать изображения произвольных размеров с прозрачностью — вместо альфа-канала здесь используется так называемый colorkey — концепция, очень близкая к хромакею, только она берет в качестве трафарета конкретный цвет. В нашем случае это «255 0 255» (ярко розовый).

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Общая производительность рендерера порадовала: он легко осилит около сотни-двух различных спрайтов с адекватной производительностью, в зависимости от их размера. Но для такого разрешения экрана и будущих игр — это неплохой результат!

❯ Ввод

Теперь нам нужно как-то управлять нашим девайсом. Для этого пора сделать реализовать геймпад: в рамках этой статьи, я собрал его на макетке.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Кидаем общий минус на все кнопки, а второй вывод размыкателя кидаем на соответствующие пины GPIO. Я выбрал предпоследние т. к. на них ничего важного не висит, текущая конфигурация занимает 6 пинов. На фото выглядит не очень красиво — на то она и макетка.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Переходим к реализации драйвера. Игры могут слушать события кнопок из специальной структуры — CInput, где на каждую кнопку выделено по одному полю. В будущем конфигурация геймпада может поменяться — например, я захочу добавить аналоговый стик.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Есть ещё способ реализации больших клавиатур и геймпадов: когда все кнопки вешаются на пару линий, где на выходе каждой кнопки есть резистор определенного номинала. ЦАП микроконтроллера считывает это значение (допустим — 1024 это вверх, а 2048 — вниз) и таким образом определяет текущую нажатую кнопку. Таким раньше любили промышлять китайцы, из-за чего нельзя было нажать одновременно вверх и вправо, или вниз и влево и т. п.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

❯ Пишем игру

Теперь у нас есть минимально-необходимая основа для написания игры. Первой игрой для своей консоли я решил написать классический шутер в космосе — летаем на кораблике и сбиваем врагов, попутно уворачиваясь от их пулек. Заодно проверим консоль на стабильность.Писать я её решил в классическом C-стиле, как и принято в embedded-мире: без std и тем более stl, без ООП и виртуальных методов, аллокаций по минимуму. В общем, примерно как писали игры под GBA! В первую очередь, подготавливаем спрайты нашей игры, прямо в пейнте, а затем конвертируем их в представление обычного массива байтов в виде header-файла. На первых порах это удобнее, чем делать свой ассет-пул:

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Архитектуру я организовал в виде нескольких подфункций, каждая из которых занимается своим стейтом (world/menu) и своими объектами (playerUpdate) и их отдельные версии для отрисовки. Сами игровые объекты я описал в виде структур, а центральным объектом сделал CWorld.

Время я решил описывать в тиках, а не миллисекундах, как я обычно это делаю на ПК — у консоли железо одно и там следить за этим нужно меньше.
Время я решил описывать в тиках, а не миллисекундах, как я обычно это делаю на ПК — у консоли железо одно и там следить за этим нужно меньше.
Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?
Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Единственные аллокации, что я использовал — это для пулов с пулями, и с врагами. Оба пула четко ограничены — до 8 врагов на экране, и до 16 пулек — вполне хватает. Динамические аллокации помогли мне найти серьезную ошибку в коде — в один из моментов игра просто валилась с Out Of Memory. После того, как я немного поменял условия и делал аллокейты тех же самых объектов каждый кадр — игра переставала крашится. Причина оказалась простая — невнимательность (вместо >= было >), по итогу при отрисовке спрайтов за пределами экрана, программа сама начинала портить вунтренние структуры аллокатара и самой игры (проявлялось в глюках и телепортациях). После фикса, все заработало как нужно. :)

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Ну и для основной части геймплея с выстрелами и столкновениями, я предусмотрел несколько функций, которые спавнят игровые объекты и сами управляют пулом. Противники обновляются как обычно, для коллизий используется AABB (axis aligned bounding box, ну или его 2D-подмножество в виде rect vs rect).

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

По итогу, у нас получилось простенькая, но рабочая игрушка, которая без проблем работала почти все время, что я писал этот материал, а значит устройство работает стабильно. И я очень горд, что у меня получилось сделать рабочий прототип своего собственного гаджета!

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Ниже выкладываю принципиальную схему устройства, она очень простая, поэтому смысла делить ее на несколько листов нет.

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

❯ Заключение

Полная цена сборки прототипа составила:

  • Raspberry Pi Pico — 557 рублей (но я брал на Яндекс Маркете, на «алике» дешевле — около 300 рублей).
  • Дисплей — 380 рублей, заказывал на «алике».
  • Макетка — 80 рублей, в местном радиомагазине.
  • Кнопки. По 5 или 10 рублей штучка, пусть будет 60 рублей.

По итогу, прототип мне обошелся в 1077 рублей. Бюджетненько, да, с учетом того, что можно сделать еще дешевле? Я тут так подумал, у меня есть желание развивать и поддерживать консоль в будущем и под консоль уже можно делать что-то своё… может, если вам будет интересно, делать их на заказ? Соберу вам по себестоимости (до 1.000 рублей) + доставка, если хочется попрограммировать под что-то маленькое, но самому паять не хочется. Мне было бы очень приятно. Пишите в личку или комменты, если вас заинтересовало бы такое! :)

Сам себе игровая консоль: как я сделал свой «тетрис» с нуля. Что происходит, когда программист встречается с железом?

Весь процесс разработки этого девайса занял у меня всего несколько дней. Я и до этого понимал концепцию работы 2D-графики на видеокартах прошлого века, поэтому ничего особо нового я для себя не открыл. Однако, я попробовал свои силы в разработке игровых девайсов, которые могут приносить удовольствие — как ментальное от самого процесса сборки и программирования, так и физическое от осознания того, что игра на нем работает. :)

Однако, это далеко не конец проекта! У нас ещё много работы: нужно развести и протравить полноценную плату, реализовать звук и API для сторонних игр, придумать корпус и распечатать его 3D-принтере. Кстати, я ведь обещал что скоро будут и другие интересные проекты с 3D-принтером: как минимум, мы доделаем предыдущий проект игровой консоли из планшета с нерабочим тачскрином и RPi Pico.

Есть смысл в этом проекте?
Да, конечно есть! Прямо таки Pico-8, но нативная и в железе :)
Нет. Их тысячи уже, и пофиг что базируются друг на друге — результат один!
Тебе нужна изюминка, как у Playdate. Например, выведи гребенку под расширения и присоедини к шине SPI!
Если бы я представил частично готовое устройство (с корпусом, АКБ и полноценной платой) — заказали бы его по себестоимости?
Ну да. Почему-б нет, возможно и попробовал бы под неё что-то написать.
Неа. Не вижу смысла.

Материал подготовлен при поддержке компании TimeWeb Cloud. Подписыайтесь на меня и ТаймВеб, чтобы не пропускать новые статьи каждую неделю!

4.3K4.3K показов
1.2K1.2K открытий
39 комментариев

Я тоже такой сделал пару лет назад. Даже с тем же дисплеем. И тоже 6 кнопок. И тоже на ардуино)
https://youtu.be/la7uFopkpTI

Ответить

И с того момента пробую разные варианты компоновки и апгрейда. Хочу сделать мультиплеерный, чтобы можно было из разных городов друг с другом играть. Плата требует доработки. После первых прототипов платы понял, что с такими недостатками жить нельзя. Вот разные версии платы и все не очень. В первую очередь кнопки нужно сажать не на один аналоговый датчик, а на сдвиговый регистр. Аналоговый датчик можно заюзать для анализа зарядки батареи. Можем объединить усилия и доделать проект.

Ответить

нихера себе ты умный

Ответить

По идее в плане железа на нем много чего будет работать, начиная от порта arduboy игр до эмуляции консолей 8-16 bit. Однако мне кажется что нужно память внутреннюю увеличить до 16mb хотя бы. Чтобы хватало не на одну игру

Ответить

Сейчас флэша на 4мб стоит, при желании можно перепаять. Ну или сд сразу добавлять :)

Ответить

Покупаю

Ответить

Моё почтение. Удачи в дальнейшей разработке

Ответить